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Abstract

Finite difference simulations have been used to model 3He gas diffusion in simulated lung tissue. The technique has the advantage

that a wide range of structural models and diffusion-sensitizing gradient waveforms can be investigated, for which analytical

methods would otherwise be virtually impossible. Results from simulations and in vivo pulsed-gradient-spin-echo (PGSE) experi-

ments show that the apparent diffusion coefficient (ADC) is a function of diffusion time and gradient strength, and suggests diffusion

is locally anisotropic. The simulations have been compared to recent work on an analytical model that characterizes lung tissue as a

series of independent cylinders. The results presented may have clinical implications for 3He ADC measurements in assessing lung

diseases such as chronic-obstructive-pulmonary-disease.

� 2003 Elsevier Inc. All rights reserved.
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1. Introduction

The introduction of hyper-polarized (HP) noble gas

magnetic resonance (MR) imaging has shown much

promise for both anatomical and functional imaging of

the pulmonary air-spaces [1,2]. An exciting aspect of
noble gas imaging is the potential to probe the lung

microstructure using diffusivity measurements derived

from pulsed-gradient-spin-echo (PGSE) techniques [3].

The confining length scales within the lungs are gener-

ally small (<0.6mm) compared to the distance of un-

restricted diffusion of a 3He atom during a typical MR

experiment. This leads to a spatial confinement in 3He

gas diffusion, yielding an apparent diffusion coefficient
(ADC) which is significantly lower than that of free-

space. In healthy volunteers, measurements suggest the
3He ADC value is between 0.1 and 0.2 cm2s�1 [4–7],

whereas in unrestricted room air the self diffusion co-

efficient, D0, is approximately 0.88 cm2 s�1 [8].
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It has been demonstrated that the 3He ADC value is

dependent on gradient timing characteristics and field

strength [9,10]. Recent work by Yablonskiy et al. [11],

has addressed this problem by using an analytical model

which can provide a more quantitative measure of lung

microstructure. They treat lung tissue as a series of
randomly oriented, independent cylinders (which we will

refer to as the ‘‘cylinder’’ model). The results yield two

orthogonal diffusion coefficients which can be used to

infer the diameters of the alveolar ducts, for which

feasible results have been reported.

The work presented here is motivated by the lack of a

comprehensive theory describing gas diffusion within the

lungs and the need to understand the variation of ADC
against b-value. We have used preliminary numerical

simulations and conducted in vivo experiments to in-

vestigate 3He diffusion in lung models over a wide range

of diffusion-sensitizing parameters. The simulation

results have been analyzed using the cylinder model.

Numerical techniques have the advantage that compli-

cated models can be investigated, which would prove

virtually impossible to solve using analytical methods
alone [12–14].
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2. Theory of diffusion in independent cylinders and
channels

Lung tissue comprises a tortuous system of alveolar

ducts and sacs. The recent work reported by Yablonskiy

et al., recognizes diffusion in lung tissue as being locally

anisotropic, and models the lung as a series of inde-

pendent cylinders, scattered randomly in all three di-

mensions (3D). We use this mathematical framework to
analyze the models presented in the methods.

In a cylinder the ADC can be characterized by two

diffusion components; one directed along the longitu-

dinal direction, DL, and the other along the transverse

direction, DT. The resulting attenuation of the spin-echo

in an infinitely long cylinder can be written as [11,15]

S ¼ S0 expð�bDL cos
2 a� bDT sin

2 aÞ; ð1Þ

where a is the angle between the gradient direction and

the principle axis of the cylinder, and b has its usual

meaning for a PGSE experiment. The transverse com-
ponent, DT, is given by the complicated equations found

in [11,16,17], which are functions of gradient timing,

gradient strength, and cylinder radius. In the lungs the

value of DL is smaller than that of free-space because the

inner walls of the alveolar ducts are not smooth, but are

surrounded by alveoli.

In lung tissue there are a large number of alveolar

ducts and sacs within each acinus, with their orientation
being isotropically distributed. Thus the ADC mea-

surement from one pixel represents an orientational-

mean value for all airways. If we consider a series of

infinitely long cylinders that are independent, but scat-

tered randomly in many orientations, then the resulting

spin-echo attenuation is given by the following sum-

mation [11]:

S ¼ S0

Z p

0

F ðaÞ exp½�bðDL cos
2 aþ DTðtÞ sin2 aÞ�daR p

0
F ðaÞda

;

ð2Þ

If the cylinders are scattered isotropically (in all three-
directions) then the factor F ðaÞ ¼ sinðaÞ [11]. If, how-

ever, the cylinders are confined to the xy plane and the

gradient direction is also confined to the xy plane (2D)

then the factor F ðaÞ ¼ 1. The latter situation is also

applicable to independent 2D channels/branches dis-

persed uniformly within a 2D plane. However, in the 2D

case DT should be calculated using the solution for dif-

fusion within a planar boundary, e.g., Eq. (15) from [16].
As expected the results reported in [11] yielded values

for DL which were much smaller than D0 in healthy

lungs. The measured values for DT were used to calcu-

late the average diameter of the alveolar ducts, which

gave physiologically plausible results (�0.7mm). De-

spite this, the alveolar ducts are interconnected, and it is

hence desirable to determine how well the ‘‘cylinder’’
approximation describes diffusion in both healthy and
diseased lung.
3. Methods

3.1. Finite difference method for diffusion

Diffusion inMR can be modeled using finite difference
(FD) techniques [18], which can allow great flexibility in

assessing complex structures such as the lungs. In order

to simplify the calculations we make the following as-

sumptions. (1) Transverse relaxation, T�
2, can be ignored

since the ADC can be measured using sequences that use

interleaved strategies with reference image scans con-

ducted at the same echo-time. (2) No convection or bulk

flow of magnetization exists, which is reasonable since in
vivo experiments are conducted whilst the volunteer

holds their breath. (3) Helium is virtually insoluble in

blood, and therefore the alveolar walls can be treated as

impenetrable. (4) Any background gradients that may

arise from B0 inhomogeneity are ignored. (5) The ADC is

calculated from the attenuation of the spin-echo, thus

only the transverse component of the magnetization is

modeled, and the longitudinal component is ignored. (6)
Prior to the application of the bipolar diffusion-

sensitizing gradient, the magnitude and phase of the

transverse magnetization is uniform, and coherent

throughout the simulation volume.

The Bloch–Torrey equation can be written as

dM
dt

¼ �icðGxxþ Gyy þ GzzÞM þ Dr2M ; ð3Þ

where M is a complex number. Its real part represents

the magnetization along the x-axis of the rotating frame

and its imaginary part represents the y-component. Gx,

Gy , and Gz are the gradient amplitudes in the x, y, and z
directions. D is the diffusion coefficient.

This equation can be solved numerically by breaking

it into two iterative parts. The gradient part of Eq. (3)

acts as a rotation term, which is responsible for incre-
menting the phase of the magnetization. In the absence

of diffusion we can solve this by a Taylor expansion,

thus obtaining the difference solution for the magneti-

zation at a time t þ Dt later

Mðt þ Dt; x; y; zÞ ¼ Mðt; x; y; zÞ expð�icðGxxþ Gyy

þ GzzÞDtÞ: ð4Þ

The diffusion part of Eq. (3) can be solved by finite-

difference. There are many possibilities here, however,

we adopted the most basic explicit scheme, which in

one dimension can be implemented in two simple steps
[19]

M 0
j ¼ Mn

j þ Dj�1;j
Dt
Dx2

ðMn
j�1 �Mn

j Þ; ð5Þ
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Mnþ1
j ¼ M 0

j þ Dj;jþ1

Dt
Dx2

ðMn
jþ1 �Mn

j Þ; ð6Þ

where Mn
j is the magnetization at jth position along the

x-axis and at the nth time step, hence Mn
j � Mðx; tÞ, with

t ¼ nDt and x ¼ jDx. M 0
j is an intermediate quantity.

Dj;jþ1 represents the effective diffusion coefficient be-
tween the jth and ðjþ 1Þth element. These equations

represent a discrete version of Fick�s first law of diffu-

sion, with Eq. (5) equating to diffusive exchange with the

left element and Eq. (6) being the contribution from the

right hand element. An impermeable barrier can be

created between two elements by setting either Dj�1;j or

Dj;jþ1 to zero in either equation, see Fig. 1. This scheme

can be converted to three dimensions in a variety of
different ways. The easiest is to apply the above proce-

dure (Eqs. (4)–(6)) at each time step first along the x-
direction, then along the y-direction, and finally along

the z-direction.
In-house code was developed in Matlab (Mathworks,

Natick) and C. Calculations were performed on a Dell

Precision workstation (Austin, TX) equipped with 1 giga

byte of random-access-memory, and a 1.6GHz central
processing unit. Data were stored using IEEE double
Fig. 1. (A) Finite difference scheme in 1D. The magnetization is rep-

resented by a series of points, evenly spaced along the x-axis. The
magnetization at the next time step (nþ 1) is calculated explicitly by

using the magnetization at the nth time step. Only the magnetization at

elements j� 1, j, and jþ 1 are required to calculate Mnþ1
j . (B) Diffu-

sion between elements; where two gas-space elements reside adjacent to

one another, the inter-element diffusion coefficients are set to D0 that of

self diffusion in free-space. A barrier between a gas-space element and

a tissue element can be created by setting the inter-element diffusion

coefficient to zero.
precision to allow sufficient precision for the calcula-
tions. The diffusion algorithm was then run using the

iterative steps of Eqs. (5) and (6). However, if an element

was tagged as being tissue then it was ignored or the

corresponding Dj;jþ1 coefficient was set to zero. Simi-

larly, the elements tagged as ‘‘tissue’’ were also ignored

in the phase increment step Eq. (4).

To simplify the simulations further, the bipolar gra-

dient waveform had no delay between the negative and
positive lobes, and the rise-time was set to zero. At the

end of a simulation the ADC value was calculated by

summing the complex magnetization, and then taking

the modulus value. The ADC was then calculated using

the following summation:

ADC ¼ 1

b
log

XN
i¼1

F ðaiÞ
( )

� 1

b

� log
XN
i¼1

F ðaiÞSðai; bÞ
( )

; ð7Þ

where Sðai; bÞ is the normalized magnetization that is

obtained for each gradient orientation ai, and is equiv-

alent to

Sðai; bÞ � exp
�
� b DLcos2ai

�
þ DT sin

2 ai
��
: ð8Þ

Elements pertaining to tissue were discounted during the

calculation of the ADC.

3.2. Boundary wrapping

In order to keep computation times to a minimum the

size of the arrays must be kept small. However, this

leads to edge effect problems since gas can not penetrate

the peripheral boundaries of the simulation volume. To

overcome this problem we implemented a simple
boundary wrapping technique where magnetization

could diffuse from one boundary to its opposite

boundary. The technique was equivalent to repeating

the simulation volume infinitely in all directions. Take

for example diffusion along the x-axis at element j ¼ 1.

With boundary wrapping, Eq. (5) was applied to find the

diffusive exchange between elements j ¼ 1 and j� 1 ¼
Nx, where Nx is the number of elements along the x-axis.
However, there is a phase discontinuity between these

elements which is due to the application of the gradient.

Thus a phase subtraction of

uxðtÞ ¼ DxNx

Z t

0

cGxðt0Þdt0; ð9Þ

must be made to the phase of element j� 1 ¼ Nx prior

to applying Eq. (5). Whereas to evaluate the magneti-

zation at element j ¼ Nx, using Eq. (6), the phase of

element jþ 1 ¼ 1 must be increased by the amount in

Eq. (9). Similar phase corrections were applied for all

directions in which boundary wrapping was desired.
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3.3. Stability, convergence, and choice of parameters

In order to stop the simulations from diverging, the

choice of parameters, Dx, Dt, Gx, Gy , Gz, and d were

carefully selected. For stability the following relation

must hold [19]:

k � D
Dt
Dx2

< 0:5: ð10Þ

Empirical tests for 3D simulations revealed that k
should be set to less than 0.3, and that accuracy could be

increased by decreasing the value of k (at the expense of

computation time). For 3D simulations using conser-

vative array sizes (e.g., 100� 100� 100), simulation

times can be of the order of days. Thus in all simulations

a (maximum) value of k ¼ 0:27 was chosen since it sat-

isfied the stability criteria, but minimized the total
computation time.

There is also a limit on the physical spacing, Dx, be-
tween elements, since the application of the gradient

causes the real and imaginary parts of M to vary sinu-

soidally. Hence, in order to satisfy the Nyquist criteria

the size of Dx must be smaller than

Dx <
p

cGxd
: ð11Þ

It was found empirically that a more stringent criteria

than Eq. (11) was required. In virtually all cases Dx
should be at least 10 times smaller than the Nyquist size

if the simulation accuracy was to exceed 1%.

3.4. Overview of models

The ADC can be interpreted as measuring gas diffu-

sion within the acini of the lungs, where respiration

takes place, and constitutes approximately 95% of the

total lung gas volume [20]. Therefore to simplify the

models, only the acinar structure was considered. Each

acinus has an approximate volume of 0.15 cm3, and

consists of a complex series of airways that branch-off

dichotomously for approximately nine generations
[20,21]. The branches which lead to further respiratory
Fig. 2. Models of lung tissue, the gray areas represent gas space. (A) A porous

(B) A ‘‘grape’’ model, consisting of a branching pattern, with mural alveoli.
channels are termed alveolar ducts, whilst terminal
branches are termed alveolar sacs. The inner surfaces of

each airway are comprised from the mouths of mural

alveoli which are typically 0.25mm in diameter, yielding

airways that are approximately 0.7mm in total diameter

(alveoli included). There are an average of 20 surface

alveoli per alveolar duct, and each duct is typically be-

tween 0.5 and 1.5mm in length [21].

In the work presented here, three simple structural
types were investigated which were deemed appropriate

to emulate lung tissue: a heterogeneous porous struc-

ture, a ‘‘grape-vine’’ model, and a ‘‘tree-like’’ model.

These are depicted in Fig. 2.

It has been speculated that porous models may be

suited to describing lung tissue. Recently, PGSE diffu-

sion measurements have been made in packed bead

phantoms and sedimentary rocks using xenon gas
[22,23]. The experimental results can potentially be used

to determine the surface-area to volume ratio of the

pores [24], thus such measurements could prove benefi-

cial in analyzing lung tissue. We investigate diffusion in

porous structures with length scales that are represen-

tative of lung tissue, and use pulse sequence parameters

which are typical of in vivo ADC measurements.

The tree- and grape-like models consist of dichoto-
mously dividing branches that comprise the main

structure which confines the gas. In the ‘‘grape-like’’

model the branches open up to additional compart-

ments, as do the alveoli in the lung. We can analyze the

results from these structures using the mathematical

framework of [11] as an approximation.

3.5. The porous model

A large range of porous structures were assessed with

a range of b-values which were deemed suitable for MR

imaging (d ¼ 0:2 ! 4:0ms, and G ¼ 8 ! 24mTm�1).

The porous models were generated by stacking pore

shapes in a hexagonal-closed-packed lattice formation

[25]. 3D pores were constructed from the locus of the

following function:
model, consisting of interconnected pores of different shapes and sizes.

(C) A plain ‘‘tree’’ like model.
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x
p

����
����
h

þ y
q

����
����
/

þ z
r

��� ���u 6 1; ð12Þ

where 2p, 2q, and 2r are the effective diameters of the

pores along the x, y, and z directions. The values of the

exponents h, /, and u were varied randomly to control

the amount of curvature of the pores, which ranged

between 2.0 and 3.0.

A total of 12 structures were generated with pore sizes

that ranged between 78 and 630 lm in diameter. The
openings between the pores could be controlled by

varying the mean lattice spacing, which was typically set

between 0.9 and 1.4 times the average pore size. Also,

the position of the pores were allowed to deviate ran-

domly from the HCP lattice by approximately 0–40% of

the average pore size, which introduced further hetero-

geneity in the structure.

In order to obtain structures with sufficient resolution
the element sizes, Dx, typically ranged between 5 and

15 lm. The simulations took between one and 10 days to

yield spin-echo attenuations for five or more b-values.
These large computation times limited the study to just

one gradient direction, which was along the x-axis.

3.6. The tree-like and grape-like models

Ideally the tree-like and grape-like models would be

generated in 3D using a parameter driven system that

used physiologically accurate dimensions. However,

such a computational model would be difficult to realize.

Instead we opted to generate the models in 2D using

hand-drawn elements created with an art package

(PowerPoint, Microsoft Corporation).

The main criteria that influenced design were branch
lengths and diameter. Typically the lengths were set to

approximately 1mm, with diameters/widths ranging

between ultra-thin (�45 lm ) and 0.32mm. For the ul-

tra-thin case, branches were only a few elements wide,

and thus transverse diffusion could be ignored to in-

vestigate the role of branching inter-connectivity on the

longitudinal diffusion, DL. An attempt was made to

generate branching angles that were akin to lung tissue.
Thus the majority of branches were adjoined to parent

branches with angles smaller than 30�. Tissue destruc-

tion, in diseases like emphysema, was emulated by cre-

ating additional pathways between otherwise

independent branches, and greatly widening and dis-

torting the shapes of the underlying branches. Also

some branches were merged together to create larger

airways.
The lack of a 3D generation method meant diffusion

simulations had to be performed in 2D. In order to fa-

cilitate a basic comparison between the 2D simulations,

the in vivo results, and the ‘‘cylinder’’ model, the mean

ADC for each simulation was calculated using Eqs. (7)

and (8), with F ðaiÞ ¼ sin ai.
This can be viewed as an extension of the simulation
data from 2D to 3D, but represents an approximation to

the problem. In part this was deemed acceptable since

the part of the aim was to investigate how well the

simulation would resemble diffusion in independent

channels/cylinders. Thus as a means of facilitating a

comparison with the Yablonskiy model the approxi-

mation was thought justifiable.

3.7. In vivo methods

The dependence of ADC upon b-value was investi-

gated on volunteers using a variety of pulse gradient

waveforms. All studies were performed with local ethical

approval. Hyperpolarized 3He was produced on-site us-

ing a commercial polarizer (Amersham Health, Durham

NC). A total of 1.2 L of 3He, polarized to approximately
30%, could be generatedover a period of 20 h.The 3He gas

was then decanted into plastic Tedlar bags (Jensen Inert,

Florida) and diluted with pure nitrogen (600ml 3He and

400ml N2). All in vivo imaging experiments were con-

ducted at 1.5 T using a whole-body MR scanner (Eclipse,

Philips Medical Systems, Cleveland Ohio) which was

equipped with a gradient set that could deliver a maxi-

mum gradient pulse of 27mTm�1 in a minimum rise time
of 375 ls. 3He images were acquired using a quadrature

radio-frequency transmit/receiver coil with a flexible twin

saddle design (Medical Advances, IGC, Milwaukee,

Wisc.), tuned to the 3He Larmor frequency of 48.5MHz.

Two dimensional 3He images were encoded using a

standard gradient echo sequence, employing a small flip-

angle of approximately 60. Diffusion-sensitizing gradient

pulses were added perpendicularly to the image plane
using the pulsed gradient method of Stejskal and Tanner

[3]. For each slice a total of six separate images were

acquired in an interleaved fashion with different diffu-

sion weighting. That is the same line of k-space was

sampled six times, using different b-values, before step-

ping to the next one. Interleaving in this fashion ensured

a reduced sensitivity to motion artifacts [5] and allowed

easy correction of flip-angle loss.
Two volunteers underwent breath-held imaging ex-

periments in the supine position. The first volunteer was

a healthy male, aged 33. The second was a female

(healthy) smoker, aged 51, who was chosen from a

previous study since her ADC maps demonstrated a

wide range of ADC values. The main imaging parame-

ters were: five 20mm thick axial slices, 10mm slice gap,

40 cm field-of-view (FOV), 48 phase encode steps, 128
data samples (over-sampled to 256), 20 ls sampling

time. Images were acquired with echo-times (TE) rang-

ing between 8.5 and 11.5ms, and repetition-times (TR)

ranging between 11 and 14ms. Note that for a particular

imaging experiment TE and TR remained fixed for all

interleaves. In each imaging experiment, the first and the

last interleaved images had no diffusion weighting, and
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were used to determine the overall flip-angle. The data
was corrected for flip-angle prior to calculating the

ADC. The remaining four interleaves were encoded

using b-values of 1.438, 2.695, 4.377, and 6.932 cm2 s�1.

A variety of gradient strengths and pulse durations were

chosen to achieve these b-values, which are shown in

Fig. 3. In the case of the healthy male, four sets of dif-

fusion schemes were acquired, whereas only two diffu-

sion schemes were acquired for the female smoker.
4. In vivo results

The results for both volunteers are summarized in

Fig. 3. For each imaging experiment the maximum pixel

intensity in the first interleaved image was typically 100

times larger than the standard deviation of noise. A total
of 10 regions-of-interest were assessed (two per slice).

The mean ADC values, corresponding to the 2nd, 3rd,

4th, and 5th image interleaves, were calculated using

ADCðiÞ ¼ log Sð1Þ � log SðiÞ
bðiÞ ; ð13Þ
Fig. 3. Five axial ADC maps of different slices of a healthy male (aged 34) an

values and gradient duration. The parameters used for each diffusion sensit

graphs (E) through (H) correspond to the mean ADC from 10 regions-of-inte

were taken from the female smoker. The axial ADC maps for the female sm

1.43 cm2 s�1. See text for a discussion of the results.
where i denotes the ith image interleave, and Sð1Þ is
the MR signal from the first interleaved image. In all

cases the ADC value was a strong function of b-value
and gradient strength, and in general the ADC value

decreased significantly with increasing diffusion time,

increasing gradient strength, and increasing b-value.
The ‘‘cylinder’’ model was used to determine the mean

radii of the alveolar ducts and sacs. In each case this

revealed plausible values which were in agreement
with the previous results reported by Yablonskiy et al.

[11]. For the healthy male, the mean radii of the

airways was measured to be between 0.32 and

0.36mm, and the ADC values were within the typical

range expected. A small variation of ADC was seen

between each region-of-interest, which is attributed to

a systematic variation of alveolar density and size in

the superior–inferior direction [7,11,26]. For the fe-
male smoker, the measured radii ranged between 0.32

and 0.40mm. However, in the regions demonstrating

very high ADC values the data deviated quite signif-

icantly from the ‘‘cylinder’’ theory, and a best fit to

the data was not possible.
d a female smoker (aged 51) were acquired using a range of different b-
izing scheme are shown in (A) through to (D). The curves plotted in

rest (ROI) taken from the healthy male. The data in graphs (I) and (J)

oker and the corresponding ROIs are presented in (K) for a b-value of
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5. Simulation results

5.1. Validation of boundary wrapping

In order to validate the simulation methods a range

of simple tests were performed. The most pertinent was

conducted on an infinitely long two dimensional chan-

nel. The 2D channel was modeled using an array of

28� 10 elements in the x- and y-directions. Boundary
wrapping was used in the y-direction to create an infi-

nitely long channel, but was not employed in the x-di-
rection in order to confine diffusion to a planar

boundary. The element size was 10 lm, yielding a

channel width of 280 lm. Attenuation curves were cal-

culated for a total of 30 gradient orientations

ð0; 1
29
p; . . . ; 28

29
p; pÞ, using a range of b-values with differ-

ent gradient strengths and durations. The results were
then summed using Eq. (7), with F ðaiÞ ¼ 1, to yield an

orientational mean ADC, these are summarized in

Fig. 4. The longitudinal diffusion coefficient, DL, was set
Fig. 4. Simulations were performed on an infinitely long 2D channel,

with a width of 280lm. Attenuation curves were calculated for 10

gradient orientations ð0; 1
9
p; . . . ; 8

9
p; pÞ and then summed to find a mean

ADC value. Different b-values were achieved by varying the duration

of the gradient pulse. Attenuation curves were calculated for three

gradient strengths, 8, 16, and 24mTm�1. The size of the 2D array was

28� 10 elements in the x- and y-directions. Boundary wrapping was

used in the y-direction to make the channel seem infinitely long. The

simulation results agree extremely well with theory (see text) and serve

as validation for the boundary wrapping technique.
to that of 3He in room air (0.88 cm2 s�1), and the
transverse component, DT, was calculated from Eq. (15)

given in [16]. The simulation results agree well with

the simple theory provided and serve as a validation for

the boundary wrapping technique.

5.2. Porous media

Simulations were performed on 3D porous structures
as described in Section 3. It was clear from the results

(which are not shown here) that the effect of imperme-

able peripheral boundaries dominated the ADC curves

when the total length of the simulation volume in the

x-directionwas ‘‘short’’ compared to the average diffusion

length
ffiffiffiffiffiffiffiffiffiffiffi
2dD0

p
. In fact the results were found to match

exactly with restricted diffusion within a planar box [16].

Thus only results from simulation volumes that utilized
the boundary wrapping method or had a sufficiently long

length in the x-direction were considered.

A typical result that sufficiently summarizes all our

results is shown in Fig. 5. As expected the ADC was

lower than D0, however, it was found to be virtually

independent of b-value for the range of diffusion pa-

rameters studied. All of the simulations we conducted,

for all porous structures yielded a similar trend of results
for the gradient waveforms studied. The asymptotic

values in ADC ranged between 0.1 and 0.8 cm2 s�1,

however, no correlation was found that linked pore size,

and the size of pore openings to the ADC value. The

results suggest that these kind of porous structures do

not emulate gas diffusion in healthy lung tissue since the

ADC is independent of b-value.

5.3. Tree-like results

The results for the ‘‘tree-like’’ formations are sum-

marized in Fig. 6. In each simulation a total of 30 gra-

dient orientations ð0; 1
29
p; . . . ; 28

29
p; pÞ were investigated,

each using 12 different b-values that were obtained by

changing the gradient strength (2, 4, . . . , 22, 24mTm�1).

The duration of the gradient, d, was fixed at 1.8ms. The
resulting attenuation curves were summed according to

Eq. (7), with F ðaiÞ ¼ sin ai, to obtain a mean-orienta-

tional ADC. In Fig. 6A the branches were made ex-

tremely thin (�45 lm) so as to neglect any transverse

diffusion, i.e., DT ¼ 0. The length of each branch was set

to 1mm. The results are summarized in the table given

in Fig. 6E. The longitudinal diffusion coefficient, as de-

rived for the entire structure was found to be 0.6 cm2 s�1,
however, many of the ADC values computed from

magnetization located within individual branches were

found to be significantly different, e.g., branch 1, which

was found to be 0.46 cm2 s�1. Also the ADC from some

branches deviated strongly from theory, thus fitting the

data yielded unsatisfactory results, e.g., branch 2. We

speculate that the variation in ADCs from one branch to



Fig. 5. Here the lung was modeled as a porous structure. The pore diameters varied between 83 and 89 lm. The total array size was 770� 39� 39,

with an element spacing of 6.5lm (not all of the simulation volume is shown along the x-direction). ADC values were calculated for two gradient

strengths, 10 and 20mTm�1. Ten different b-values were created by changing the duration of the gradient lobes, d. Only gradients, directed along the

largest length of the simulation volume, were investigated.

Fig. 6. Simulations were conducted for ‘‘tree-like’’ structures. Different b-values were generated by changing gradient strength, the duration remained

fixed, d ¼ 1:8ms. In (A) the branches were made thin so that the transverse diffusion coefficient could be approximated as zero. In (B) the diameter of

the branches were set to 0.185mm (the structure was created over two layers, see text for an explanation). In (C) the branch diameter was 0.320mm.

In (D) the same structure as (B) and (C) was taken as a basis, however, additional openings were introduced and the size of the branches were greatly

widened to model emphysema. Some of the simulation results are summarized in the table (E) and the graph (F). The list of symbols included within

the table correspond to the data in the graph. Solid lines represent a best fit to theory.
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another is a result of the different branching angles.
Also, the deviation from the cylinder model for some

branches is likely to be a result of the branches being

comparable in length to the average diffusion length,ffiffiffiffiffiffiffiffiffi
2Dd

p
. Hence, the effective DL is not a constant with

respect to diffusion time.

In Fig. 6B simulations were conducted in a tree

structure with 2D branches 0.185mm in width. In order

to include a large number of branches within the simu-
lation area, the structures were created in two separate

layers. The dark ‘‘pins’’ connect the two layers together.

The main branch of the tree tessellates in the longest

direction, which allowed the boundary wrapping meth-

od to be employed. For the results shown in the table,

the data corresponded to theory quite well. However, in

all cases the diameter yielded from fitting the data was

greatly overestimated. The reason for this is unknown,
however, it is likely to be related to the fact that the

branches are not infinitely long, and hence, the com-

ponents DL and DT are not strictly independent pa-

rameters. Despite this the trend in ADC data did follow

a similar trend to the theoretical data, namely a de-

creasing ADC with an increasing b-value.

In Fig. 6C, the same structure as in Fig. 6B was in-

vestigated with wider branches, 0.32mm in diameter.
The theoretical fits to the results for all the branches
Fig. 7. Simulations were conducted in ‘‘grape-like’’ structures. The 2D structu

The branches were designed to tessellate in both directions so that the bounda

to simulation (A), however, additional pathways between the main branches

been greatly widened to emulate emphysema. (D) The data in the graphs

calculated from 30 gradient directions (see text). Solid lines correspond to a
yielded a large overestimation for the diameters. Again
we found that the ADC for some branches deviated

quite strongly from theory, an example is branch 1.

In Fig. 6D, the same basis structure was greatly ma-

nipulated to simulate emphysema. The size of the and

shape of the branches were significantly increased and

distorted. Also additional pathways between branches

were added. For clarity only one layer of the simulation

volume is shown. The results gave a high ADC value, as
expected, and deviated significantly from theory since

much of the branch like structure had been deformed.

Overall the simulation results fitted the theoretical

trend of the cylinder model, even if the predicted di-

ameters were incorrect. The ADC trend suggests that

tree-like structures yield anisotropic diffusion that is well

described by two diffusion coefficients. However, the

results do not enlighten us to the effects of intercon-
nections and branching angles on the ADC values.

5.4. Grape-like results

Simulations in the ‘‘grape-like’’ structures are sum-

marized in Fig. 7. In each case a total of 16 gradient

orientations ð0; 1
15
p; . . . 14

15
p; pÞ were investigated, with

gradients of fixed duration (d ¼ 1:8ms). Twelve different
b-values were obtained by changing the gradient
res (A), (B), and (C) comprised 226� 291 elements, each 10 lm in size.

ry wrapping method could be used. Simulation (B) is nearly equivalent

have been added (highlighted by arrows). In (C) the lowest branch has

correspond to the mean ADC value from the entire simulation area

best fit to theory, circles are simulation data.
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strength (2, 4, . . . , 22, 24mTm�1). The main simulation
structure (shown in Fig. 7A) was made to tessellate in

order to make optimal use the simulation area and allow

boundary wrapping to be employed. The matrix size of

the simulation area was 226� 291, with an element size

of 10 lm. The diameters of the alveoli ranged between

0.25 and 0.45mm, which is consistent with lung tissue.

In Fig. 7B a few selected branches were joined together

by additional channels in order to spoil the branching
structure and allow additional diffusion pathways

(highlighted with arrows). In Fig. 7C additional lung

destruction resembling emphysema was emulated by

widening the diameter of the lower branches by a factor

of approximately 3.

The results are similar to the those from the ‘‘tree-like’’

simulations. However, the estimated diameters obtained

from fitting the data, using Eq. (2), yield plausible values.
For simulation (a), the estimated diameter is 0.58mmand

the corresponding longitudinal diffusion coefficient is

0.595 cm2 s�1. In simulation (b) DL increases significantly

as a result of adding the additional connections, which is

expected. However, it must be noted that the estimated

diameter also increases to 0.63mm, whereas it should not

have, and we find that there was a minor deviation be-

tween the data and the fitted curve. It is clear that the
results for simulation (c) do not agree with theory, which

is expected when compared to in vivo measurements of

lung tissue that demonstrate high ADC values.

The fact that the results in Figs. 7A and B agree quite

well with the cylinder model and are similar to results

from the tree-like model suggest that diffusion in the

lungs is mostly characterized by two diffusion coeffi-

cients. The presence of the alveoli-like shapes do not
significantly perturb the trend of the ADC as compared

to the tree-like results, and is partly expected since he-

lium diffusion is very fast and the diffusion time scales, d,
are quite long in these experiments. Also, the presence of

the alveoli acts to reduce the overall value of DL, as

compared to the tree-like structures with large branch

widths (e.g., Figs. 6B and C).
6. Discussion

3He gas diffusion was investigated using a finite-dif-

ference method in structures resembling healthy and

diseased lung tissue. The simulation results compare

well to in vivo experiments and the analytical ‘‘cylinder’’

theory reported by Yablonskiy et al.
We report the use of a boundary wrapping method to

create infinitely repeating structures. The technique is

useful for reducing the number of elements required for

a simulation, and hence allows a reduction in compu-

tation time. However, it is only applicable for structures

that possess tessellating features. This was found to be

useful for eliminating boundary effects in our simula-
tions, however, it is debatable whether tessellating
structures are valid for modeling lung tissue.

Diffusion within simulated porous structures yielded

an ADC value that was virtually independent of b-value
for the range of parameters studied. This was partly ex-

pected since the root-mean-squared distance traveled by

the gas during the time 2d was comparatively long

compared to the pore sizes investigated. The results in-

dicate that a continuous porous structure is not a suit-
able candidate for characterizing diffusion within healthy

lung tissue, since the ADC is virtually independent of

b-value for the gradient waveforms studied. A more

suitable model may be a fractured porous media, where

many of the pores would have blind endings. However, it

can be argued that such a model is analogous to the

‘‘tree-like’’ and ‘‘grape-like’’ models studied here.

Two-dimensional simulations were conducted on
‘‘grape-like’’ and ‘‘tree-like’’ models. The structures

were created using dimensions applicable to lung phys-

iology, i.e., branch lengths and airway diameters had

length scales ranging from �0.1 to 3mm. The aims were,

firstly, to provide a model for comparing simulation

results to actual in vivo measurements, and secondly, to

probe the robustness of the ‘‘cylinder’’ model. However,

we made a significant approximation to make the results
applicable to diffusion in 3D. Despite this, the result did

agree with the diffusion measurements in vivo, and data

fitted relatively well to the ‘‘cylinder’’ model. However,

significant mismatch was found between the actual di-

ameters of the airways and the diameters obtained from

fitting. Also, in the simulations emulating emphysema

the data deviated strongly from the ‘‘cylinder’’ theory,

which is also highlighted in [11].
We found that results from simulations and in vivo

measurements agree with the results of Yablonskiy

et al.—that is diffusion is anisotropic and is mainly

characterized by two diffusion components, DL and DT.

However, the results from simulations (not all are

shown), do not follow theory exactly, and suggest that

other factors such as branch inter-connectivity and

perhaps tortuosity must be taken into account. Also,
applying the ‘‘cylinder’’ model for healthy lung tissue

yields plausible results, however, the model breaks down

where there has been significant lung destruction.

As previously reported by Yablonskiy et al. [11] and

Maier et al. [9] the ADC in healthy lung tissue varies as a

function b-value. Our simulation results and in vivo

experiments agree with these findings, and suggests that

future studies of the ADC in healthy and diseased lungs
should attempt to take this into account.
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